metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetraaquabis[3-(4-pyridyl)benzoato-kN]nickel(II)

Qiang-Xin Wang,^a Ming-Hua Zeng^a and Seik Weng Ng^{b*}

^aSchool of Chemistry & Chemical Engineering, Guangxi Normal University, 541004 Guilin 541004, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 26 November 2009; accepted 27 November 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.090; data-to-parameter ratio = 13.5.

The Ni^{II} atom in the title compound, $[Ni(C_{12}H_8NO_2)_2(H_2O)_4]$, exists in an all-trans octahedral coordination environment. The 3-(4-pyridyl)benzoate ligand binds to Ni atom through the pyridyl N atom; the pyridine and benzene rings are oriented at a dihedral angle of 26.27 $(10)^{\circ}$. Adjacent complexes are linked by $O-H \cdots O$ hydrogen bonds, forming a three-dimensional network. The metal atom lies on a special position of 2 site symmetry in the crystal structure.

Related literature

The 3-(pyridin-4-yl)benzoate unit is fairly rigid like the nicotinate unit, which also forms a similar zwitterionic nickel derivative; see: Batten & Harris (2001).

Experimental

Crystal data [Ni(C₁₂H₈NO₂)₂(H₂O)₄] $M_r = 527.16$ Monoclinic, C2/c a = 24.564 (3) Å b = 7.0520 (8) Å c = 13.781 (2) Å $\beta = 113.325 (2)^{\circ}$

V = 2192.1 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.94 \text{ mm}^-$ T = 173 K $0.47 \times 0.31 \times 0.08 \text{ mm}$

Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.666, \ T_{\max} = 0.929$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	H atoms treated by a mixture of
$wR(F^2) = 0.090$	independent and constrained
S = 1.09	refinement
2360 reflections	$\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$
175 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$
4 restraints	

5587 measured reflections

 $R_{\rm int} = 0.023$

2360 independent reflections

1977 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Vi1-O1W	2.0627 (14)	Ni1-N1	2.0931 (16)
Vi1 - O2W	2.0811 (14)		

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1w-H11···O1 ⁱ	0.84 (1)	1.88 (1)	2.682 (2)	160 (3)
$O1w-H12\cdots O2^{ii}$	0.83 (1)	1.91 (1)	2.734 (2)	170 (2)
O2w−H21···O1 ⁱⁱⁱ	0.84 (1)	1.93 (1)	2.732 (2)	159 (2)
$O2w-H22\cdots O2^{iv}$	0.83 (1)	1.88 (1)	2.711 (2)	177 (3)
Symmetry codes: $-x + \frac{3}{2}, -y + \frac{1}{2}, -z + 2$	(i) $x - \frac{1}{2}, -y$; (iv) $x - \frac{1}{2}, y + \frac{1}{2}$	$+\frac{1}{2}, z - \frac{1}{2};$ (ii)	$-x + \frac{3}{2}, y - \frac{1}{2}$	$, -z + \frac{3}{2};$ (iii)

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

This work was supported by the Guangxi Graduate Education Innovation Program (2009106020703M44) and the University of Malaya.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2699).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191. Batten, S. R. & Harris, A. R. (2001). Acta Cryst. E57, m9-m11. Bruker (2004). APEX2 and SAINT. Bruker AXS inc., Madison, Wisconsin,

USA. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

Acta Cryst. (2009). E65, m1708 [doi:10.1107/S1600536809051204]

Tetraaquabis[3-(4-pyridyl)benzoato-*KN*]nickel(II)

Q.-X. Wang, M.-H. Zeng and S. W. Ng

Experimental

3-(Pyridin-4-yl)benzoic acid was purchased from a chemical supplier. The reagent (0.199 g, 1 mmol) and sodium hydroxide (0.040 g, 1 mmol) were mixed with nickel(II) nitrate hexahydrate (0.150 g, 0.5 mmol) in water (10 ml). The mixture was placed in a 15 ml Teflon-lined autoclave and heated at 423 K for 48 h. The autoclave was cooled over 12 h at a rate of 5 K an hour. Green crystals were isolated by hand (yield *ca* 60% based on Ni).

Refinement

Carbon-bound hydrogen atoms were generated geometrically and were constrained to ride on their parent atoms $[C-H = 0.95 \text{ Å}; U_{iso}(H) = 1.2U_{eq}(C)]$. The water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H 0.84±0.01 Å; their temperature factors were refined.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $Ni(H_2O)_4(C_{12}H_2NO_2)_2$ at the 70% probability level; hydrogen atoms are drawn as sphere of arbitrary radius.

Tetraaquabis[3-(4-pyridyl)benzoato-κN]nickel(II)

Crystal data	
[Ni(C ₁₂ H ₈ NO ₂) ₂ (H ₂ O) ₄]	F(000) = 1096
$M_r = 527.16$	$D_{\rm x} = 1.597 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 996 reflections
a = 24.564 (3) Å	$\theta = 3.0-26.9^{\circ}$
b = 7.0520 (8) Å	$\mu = 0.94 \text{ mm}^{-1}$
c = 13.781 (2) Å	T = 173 K
$\beta = 113.325 \ (2)^{\circ}$	Prism, green
$V = 2192.1 (4) Å^3$	$0.47 \times 0.31 \times 0.08 \text{ mm}$
Z = 4	

Data collection

Bruker APEXII diffractometer

2360 independent reflections

Radiation source: fine-focus sealed tube	1977 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.023$
φ and ω scans	$\theta_{\text{max}} = 27.0^\circ, \ \theta_{\text{min}} = 1.8^\circ$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 31$
$T_{\min} = 0.666, T_{\max} = 0.929$	$k = -8 \rightarrow 8$
5587 measured reflections	$l = -17 \rightarrow 10$
Refinement	
Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.090$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.09	$w = 1/[\sigma^2(F_o^2) + (0.0539P)^2 + 0.5684P]$ where $P = (F_o^2 + 2F_c^2)/3$
2360 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
175 parameters	$\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$
4 restraints	$\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Ni1	0.5000	0.30069 (5)	0.7500	0.01561 (13)
N1	0.58142 (7)	0.3092 (2)	0.73473 (13)	0.0179 (3)
01	0.90563 (6)	0.2232 (2)	0.96391 (12)	0.0266 (3)
O2	0.96160 (6)	0.29413 (19)	0.87580 (12)	0.0242 (3)
O1W	0.46891 (6)	0.0848 (2)	0.64084 (11)	0.0199 (3)
O2W	0.53247 (6)	0.5047 (2)	0.86819 (11)	0.0208 (3)
C1	0.91223 (9)	0.2740 (3)	0.88189 (16)	0.0197 (4)
C2	0.85662 (8)	0.3156 (3)	0.78537 (16)	0.0172 (4)
C3	0.85969 (8)	0.3652 (3)	0.69003 (17)	0.0208 (4)
H3	0.8970	0.3732	0.6845	0.025*
C4	0.80768 (8)	0.4029 (3)	0.60302 (16)	0.0220 (4)
H4	0.8096	0.4366	0.5377	0.026*
C5	0.75295 (8)	0.3919 (3)	0.61016 (15)	0.0205 (4)
Н5	0.7178	0.4188	0.5500	0.025*
C6	0.74932 (8)	0.3414 (3)	0.70535 (15)	0.0176 (4)
C7	0.80178 (8)	0.3043 (3)	0.79252 (16)	0.0173 (4)
H7	0.8000	0.2706	0.8580	0.021*
C8	0.69121 (8)	0.3288 (3)	0.71474 (16)	0.0173 (4)
C9	0.68658 (8)	0.3575 (3)	0.81138 (16)	0.0198 (4)
Н9	0.7210	0.3856	0.8727	0.024*
C10	0.63215 (9)	0.3452 (3)	0.81801 (16)	0.0205 (4)
H10	0.6305	0.3632	0.8851	0.025*

~				
C11	0.58576 (9)	0.2824 (3)	0.64134 (16)	0.0199 (4)
H11A	0.5505	0.2566	0.5811	0.024*
C12	0.63867 (8)	0.2903 (3)	0.62852 (16)	0.0198 (4)
H12A	0.6392	0.2694	0.5608	0.024*
H11	0.4524 (11)	0.124 (4)	0.5786 (11)	0.048 (9)*
H12	0.4935 (8)	0.004 (3)	0.6396 (17)	0.023 (6)*
H21	0.5473 (10)	0.452 (3)	0.9275 (11)	0.030 (7)*
H22	0.5096 (10)	0.591 (3)	0.869 (2)	0.043 (8)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.01032 (18)	0.0186 (2)	0.0183 (2)	0.000	0.00608 (14)	0.000
N1	0.0125 (7)	0.0184 (8)	0.0222 (9)	-0.0001 (6)	0.0061 (7)	0.0022 (7)
01	0.0189 (7)	0.0361 (9)	0.0215 (8)	-0.0012 (6)	0.0043 (6)	0.0023 (6)
O2	0.0118 (7)	0.0227 (8)	0.0362 (9)	0.0008 (5)	0.0077 (6)	0.0012 (6)
O1W	0.0155 (7)	0.0222 (8)	0.0216 (8)	0.0010 (6)	0.0071 (6)	-0.0019 (6)
O2W	0.0156 (7)	0.0225 (8)	0.0226 (8)	0.0028 (6)	0.0056 (6)	-0.0022 (6)
C1	0.0154 (9)	0.0154 (9)	0.0259 (11)	-0.0002 (7)	0.0056 (8)	-0.0042 (8)
C2	0.0149 (9)	0.0145 (9)	0.0214 (10)	-0.0026 (7)	0.0064 (8)	-0.0045 (8)
C3	0.0149 (9)	0.0215 (10)	0.0294 (11)	-0.0027 (8)	0.0122 (8)	-0.0026 (8)
C4	0.0212 (10)	0.0277 (11)	0.0202 (10)	-0.0032 (8)	0.0115 (8)	-0.0003 (9)
C5	0.0158 (9)	0.0234 (10)	0.0206 (10)	-0.0007 (8)	0.0054 (8)	-0.0002 (8)
C6	0.0135 (9)	0.0176 (9)	0.0223 (10)	-0.0020(7)	0.0078 (8)	-0.0033 (7)
C7	0.0156 (9)	0.0179 (9)	0.0187 (9)	0.0002 (7)	0.0071 (8)	0.0002 (8)
C8	0.0149 (9)	0.0163 (9)	0.0205 (10)	0.0014 (7)	0.0069 (8)	0.0024 (7)
C9	0.0130 (9)	0.0242 (10)	0.0204 (10)	0.0011 (8)	0.0047 (8)	0.0004 (8)
C10	0.0175 (9)	0.0255 (10)	0.0198 (10)	0.0014 (8)	0.0090 (8)	0.0003 (8)
C11	0.0139 (9)	0.0237 (10)	0.0210 (10)	-0.0004 (8)	0.0057 (8)	0.0008 (8)
C12	0.0167 (10)	0.0230 (10)	0.0196 (10)	-0.0007 (8)	0.0071 (8)	-0.0007 (8)

Geometric parameters (Å, °)

2.0627 (14)	C3—C4	1.388 (3)
2.0627 (14)	С3—Н3	0.9500
2.0811 (14)	C4—C5	1.389 (3)
2.0811 (14)	C4—H4	0.9500
2.0931 (16)	C5—C6	1.396 (3)
2.0931 (16)	С5—Н5	0.9500
1.342 (3)	C6—C7	1.395 (3)
1.346 (2)	C6—C8	1.486 (3)
1.256 (3)	С7—Н7	0.9500
1.256 (2)	C8—C12	1.392 (3)
0.838 (10)	C8—C9	1.396 (3)
0.834 (10)	C9—C10	1.378 (3)
0.840 (10)	С9—Н9	0.9500
0.833 (10)	C10—H10	0.9500
1.511 (3)	C11—C12	1.380 (3)
	2.0627 (14) 2.0627 (14) 2.0811 (14) 2.0811 (14) 2.0931 (16) 1.342 (3) 1.346 (2) 1.256 (3) 1.256 (2) 0.838 (10) 0.834 (10) 0.833 (10) 1.511 (3)	2.0627 (14) $C3-C4$ $2.0627 (14)$ $C3-H3$ $2.0811 (14)$ $C4-C5$ $2.0811 (14)$ $C4-H4$ $2.0931 (16)$ $C5-C6$ $2.0931 (16)$ $C5-H5$ $1.342 (3)$ $C6-C7$ $1.346 (2)$ $C6-C8$ $1.256 (3)$ $C7-H7$ $1.256 (2)$ $C8-C12$ $0.838 (10)$ $C9-C10$ $0.834 (10)$ $C9-H9$ $0.833 (10)$ $C10-H10$ $1.511 (3)$ $C11-C12$

C2—C3	1.390 (3)	C11—H11A	0.9500
C2—C7	1.391 (3)	C12—H12A	0.9500
O1W—Ni1—O1W ⁱ	84.85 (8)	C4—C3—C2	119.26 (17)
O1W—Ni1—O2W	176.09 (6)	С4—С3—Н3	120.4
O1W ⁱ —Ni1—O2W	91.32 (6)	С2—С3—Н3	120.4
O1W—Ni1—O2W ⁱ	91.32 (6)	C3—C4—C5	120.92 (18)
O1W ⁱ —Ni1—O2W ⁱ	176.09 (6)	C3—C4—H4	119.5
O2W—Ni1—O2W ⁱ	92.51 (8)	C5—C4—H4	119.5
O1W—Ni1—N1 ⁱ	90.11 (6)	C4—C5—C6	120.31 (18)
O1W ⁱ —Ni1—N1 ⁱ	92.32 (6)	C4—C5—H5	119.8
O2W—Ni1—N1 ⁱ	89.24 (6)	С6—С5—Н5	119.8
O2W ⁱ —Ni1—N1 ⁱ	88.48 (6)	C7—C6—C5	118.45 (17)
O1W—Ni1—N1	92.32 (6)	C7—C6—C8	120.35 (17)
O1W ⁱ —Ni1—N1	90.11 (6)	C5—C6—C8	121.19 (17)
O2W—Ni1—N1	88.48 (6)	C2—C7—C6	121.21 (18)
O2W ⁱ —Ni1—N1	89.24 (6)	С2—С7—Н7	119.4
N1 ⁱ —Ni1—N1	176.71 (9)	С6—С7—Н7	119.4
C10—N1—C11	116.48 (16)	C12—C8—C9	116.40 (17)
C10—N1—Ni1	121.33 (13)	C12—C8—C6	122.37 (18)
C11—N1—Ni1	122.18 (13)	C9—C8—C6	121.23 (17)
Ni1—O1W—H11	113 (2)	C10—C9—C8	120.12 (18)
Ni1—O1W—H12	117.0 (16)	С10—С9—Н9	119.9
H11—O1W—H12	105 (2)	С8—С9—Н9	119.9
Ni1—O2W—H21	109.7 (18)	N1—C10—C9	123.49 (18)
Ni1—O2W—H22	117.8 (19)	N1-C10-H10	118.3
H21—O2W—H22	110 (2)	С9—С10—Н10	118.3
O1—C1—O2	124.36 (19)	N1-C11-C12	123.49 (19)
O1—C1—C2	116.99 (17)	N1—C11—H11A	118.3
O2—C1—C2	118.65 (18)	C12—C11—H11A	118.3
C3—C2—C7	119.85 (18)	C11—C12—C8	120.03 (19)
C3—C2—C1	120.82 (17)	C11—C12—H12A	120.0
C7—C2—C1	119.32 (18)	C8—C12—H12A	120.0
O1W—Ni1—N1—C10	-144.22 (15)	C3—C2—C7—C6	0.1 (3)
O1W ⁱ —Ni1—N1—C10	-59.36 (15)	C1—C2—C7—C6	-179.93 (17)
O2W—Ni1—N1—C10	31.96 (15)	C5—C6—C7—C2	-0.4 (3)
O2W ⁱ —Ni1—N1—C10	124.49 (15)	C8—C6—C7—C2	-179.88 (17)
01W—Ni1—N1—C11	36.93 (15)	C7—C6—C8—C12	-154.18 (19)
O1W ⁱ —Ni1—N1—C11	121.79 (15)	C5—C6—C8—C12	26.4 (3)
O2W—Ni1—N1—C11	-146.89 (15)	C7—C6—C8—C9	26.6 (3)
O2W ⁱ —Ni1—N1—C11	-54.36 (15)	C5—C6—C8—C9	-152.89 (19)
O1—C1—C2—C3	-177.38 (18)	C12—C8—C9—C10	0.6 (3)
O2—C1—C2—C3	3.5 (3)	C6—C8—C9—C10	179.95 (18)
O1—C1—C2—C7	2.7 (3)	C11—N1—C10—C9	0.8 (3)
O2—C1—C2—C7	-176.42 (17)	Ni1—N1—C10—C9	-178.14 (15)
C7—C2—C3—C4	0.0 (3)	C8—C9—C10—N1	-1.1 (3)

C1—C2—C3—C4	-179.89 (18)	C10-N1-C11-C12		0.0 (3)
C2—C3—C4—C5	0.1 (3)	Ni1—N1—C11—C12		178.89 (14)
C3—C4—C5—C6	-0.4 (3)	N1-C11-C12-C8		-0.4 (3)
C4—C5—C6—C7	0.5 (3)	C9—C8—C12—C11		0.1 (3)
C4—C5—C6—C8	179.99 (18)	C6—C8—C12—C11		-179.22 (18)
Symmetry codes: (i) $-x+1$, y , $-z+3/2$.				
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O1w—H11···O1 ⁱⁱ	0.84 (1)	1.88 (1)	2.682 (2)	160 (3)
O1w—H12···O2 ⁱⁱⁱ	0.83 (1)	1.91 (1)	2.734 (2)	170 (2)
O2w—H21···O1 ^{iv}	0.84 (1)	1.93 (1)	2.732 (2)	159 (2)
O2w—H22···O2 ^v	0.83 (1)	1.88 (1)	2.711 (2)	177 (3)
Symmetry codes: (ii) $x-1/2$, $-y+1/2$, $z-$	1/2; (iii) $-x+3/2$, $y-1/2$, $-z$	+3/2; (iv) $-x+3/2$, $-y+1/2$, $-$	-z+2; (v) x-1/	/2, <i>y</i> +1/2, <i>z</i> .

